Новости партнеров

Atmospheric Chemistry and Physics: Оценка арктических облаков, смоделированных с помощью Унифицированной модели и Интегрированной системы прогнозирования

 

Путём синтеза сделанных в центральной части Арктики результатов дистанционного зондирования в облачный продукт Cloudnet с привязкой к модели, авторы оценивают, насколько хорошо Единая модель Метеобюро (UM) и Интегрированная система прогнозирования (IFS) Европейского центра среднесрочного прогнозирования погоды (ECMWF) охватывают арктические облака и связанные с ними взаимодействия с поверхностным энергетическим балансом и термодинамической структурой нижней тропосферы. Эта оценка была проведена с использованием 4-недельного периода наблюдений экспедиции «Северный Ледовитый океан 2018», в ходе которой измерялся переход от условий таяния морского льда к условиям замерзания. В конфигурации вложенной модели с ограниченной областью (LAM) в UM были протестированы три разные облачные схемы: две региональные одномоментные (UM_RA2M и UM_RA2T) и одна новая двухмоментная (UM_CASIM-100), а одно глобальное моделирование было проведено с помощью IFS с использованием облачной схемы по умолчанию (ECMWF_IFS).
В обеих моделях были выявлены постоянные недостатки: как UM, так и IFS завышали вероятность появления облаков ниже 3 км. Эта завышенная оценка также соответствовала трём конфигурациям облаков, использованным в UM, при этом среднее значение появления облаков с вероятностью >90% было смоделировано между 0,15 и 1 км во всех моделях. Однако микрофизическая структура облаков в среднем моделировалась достаточно хорошо в каждом подходе, при этом содержание жидкой воды в облаках (LWC) и содержание воды со льдом (IWC) хорошо согласовывались с наблюдениями на большей части вертикального профиля. Ключевое микрофизическое расхождение между модельными оценками и наблюдениями было в LWC между уровнями 1 и 3 км, где большинство расчётов (все, кроме UM_RA2T) завышали наблюдаемое LWC.
Несмотря на разумное воспроизведение физической структуры облаков, обе модели не смогли адекватно отразить эпизоды отсутствия облаков: это постоянство облачного покрова, вероятно, способствует регулярному смещению приповерхностной температуры в каждом расчёте. Обе модели также постоянно демонстрировали смещения температуры и влажности ниже уровня 3 км, причём особенно сильные смещения холода совпадали с избыточными смоделированными слоями облаков. Эти погрешности, вероятно, связаны со слишком сильным радиационным охлаждением верхней части облаков от этих смоделированных облачных слоёв и были одинаковыми для трёх протестированных конфигураций UM, несмотря на различия в их параметризации облаков в подсеточном масштабе. Вызывает тревогу то, что полученные результаты предполагают, что эти смещения в региональной модели были унаследованы от глобальной модели, что приводит к причинно-следственной связи между чрезмерной облачностью на низких высотах и совпадающим смещением в сторону холода. Использование репрезентативных концентраций ядер конденсации облаков в конфигурации UM с двойным моментом при улучшении микрофизической структуры облаков мало способствует смягчению этих предубеждений; поэтому, независимо от того, насколько всеобъемлющей будет физика облаков в используемой вложенной конфигурации LAM, её облачная и термодинамическая структура будут по-прежнему в значительной степени зависеть от метеорологических условий, полученных из основной модели.

 

Ссылка: https://acp.copernicus.org/articles/23/4819/2023/

Печать