Климатический центр Росгидромета

Новости партнеров

Geophysical Research Letters: Радиационное воздействие морского льда Земли с 1980 по 2023 гг.

 

Морской лёд охлаждает Землю, уменьшая поглощённую ею солнечную энергию. Авторы сочетают моделирование переноса радиации со спутниковыми данными об альбедо поверхности, распределении морского льда и облаков, чтобы количественно оценить радиационный эффект морского льда в верхней части атмосферы. Усреднённые за 1980–2023 гг. значения радиационного эффекта морского льда в Арктике и Антарктике варьируются от –0,64 до –0,86 Вт/м2 и от –0,85 до –0,98 Вт/м2 соответственно, с разными наборами данных по облакам и предположениями о климатологической и ежегодно меняющейся облачности. Однако тенденции радиационного эффекта морского льда относительно нечувствительны к этим предположениям. Арктический радиационный эффект морского льда ослаблялся квазилинейно со скоростью 0,04–0,05 Вт·м-2 за десятилетие, что означает снижение отражательной способности арктического морского льда на 21–27% с 1980 года. В 2016 году режим морского льда Антарктики изменился, в результате чего радиационный эффект морского льда в Антарктике и мире в 2016–2023 гг. был на 0,08–0,12 и 0,22–0,27 Вт/м2 соответственно слабее по сравнению с 1980–1988 гг. Таким образом, глобальный морской лёд потерял 13–15% своего планетарного охлаждающего эффекта с начала/середины 1980-х годов, а предполагаемая обратная связь глобального альбедо морского льда составляет 0,24–0,38 Вт · м-2 · К-1.

 

Ссылка: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL109608

Печать

EGUsphere: Влияние неопределённости показателя преломления чёрного углерода на моделируемую оптическую толщину и радиационное воздействие

 

Радиационное воздействие чёрного углерода подвержено множеству сложных, взаимосвязанных источников неопределённости. Здесь авторы выделяют роль показателя преломления, определяющего степень поглощения и рассеяния излучения чёрным углеродом. При сохранении других параметров постоянными изменение показателя преломления чёрного углерода от m550nm = 1,75–0,44 до m550nm = 1,95–0,79 увеличивает оптическую толщину моделируемого поглощающего аэрозоля на 42 % и эффективное радиационное воздействие от взаимодействия чёрного углерода с излучением на 47%. Увеличение оптической толщины поглощающего аэрозоля сопоставимо с её увеличением, полученным из недавних обновлений кадастров выбросов аэрозолей, а в регионах-источниках Британской Колумбии оно на треть превышает разницу в оптической толщине поглощающего аэрозоля, полученную со спутников MISR и POLDER-GRASP. Увеличение эффективного радиационного воздействия от взаимодействия чёрного углерода с излучением сопоставимо с масштабом неопределённости в недавних литературных оценках. Хотя чувствительность модели к выбору показателя преломления чёрного углерода модулируется другими вариантами параметризации, представленные результаты подчёркивают важность учёта разнообразия показателей преломления в проектах взаимного сравнения моделей.

 

Ссылка: https://egusphere.copernicus.org/preprints/2024/egusphere-2024-1796/

Печать

Global Biogeochemical Cycles: Смоделированные сезонные циклы потоков N2O с поверхности и содержания N2O в атмосфере

 

Закись азота (N2O) представляет собой парниковый газ и вещество, разрушающее стратосферный озоновый слой, с большими и растущими антропогенными выбросами. Предыдущие исследования показали, что приток воздуха, обеднённого N2O, из стратосферы частично является причиной сезонности содержания N2O в тропосфере (aN2O), но другие факторы остаются неясными. Авторы объединили поверхностные потоки из восьми моделей суши и четырёх моделей океана из фазы 2 проекта по сравнению моделей азота и N2O с модельными результатами переноса в тропосфере для моделирования aN2O в восьми удалённых точках отбора проб воздуха для современного и доиндустриального периода. Модели показывают общее согласие в отношении сезонной поэтапности среднезональных потоков N2O для большинства участков, но сезонные размахи амплитуд различаются в разных моделях в несколько раз. Смоделированная сезонная амплитуда приземного aN2O колеблется от 0,25 до 0,80 частей на миллиард (межквартильный диапазон 21–52% от медианы) для суши, 0,14–0,25 частей на миллиард (17–68%) для океана и 0,28–0,77 частей на миллиард (23–52%) для совокупного вклада потоков. Наблюдаемая сезонная амплитуда для этих участков колеблется от 0,34 до 1,08 частей на миллиард. Стратосферные вклады в aN2O, выведенные на основе разницы между моделью приземно-тропосферной среды и наблюдениями, показывают на 16–126% большие амплитуды и минимумы с задержкой примерно на один месяц по сравнению с наблюдениями в северном полушарии. Потоки с поверхности суши и их сезонная амплитуда увеличились с доиндустриальной эпохи и, согласно прогнозам, будут и дальше расти в результате антропогенной деятельности. Эти результаты демонстрируют растущую важность потоков с поверхности суши. Учитывая большой разброс модельных результатов, наблюдения aN2O in situ и модели химии переноса в атмосфере предоставят возможности для снижения неопределённостей в моделях наземной и океанической биосферы, что имеет решающее значение для прогнозирования циклов углерода и азота в условиях продолжающегося глобального потепления.

 

Ссылка: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023GB008010

Печать

Science: Потепление океанов приводит к распространению вредоносного цветения водорослей в полярных водах

 

В 2022 году Берингов пролив у Аляски пострадал от беспрецедентного цветения токсичных организмов, вызывающих паралитическое отравление моллюсками. 

На этом спутниковом снимке Берингова пролива, сделанном 2 августа 2022 года, вредоносное цветение водорослей показано красным цветом.

В июле 2022 года Иви Фашон (Evie Fachon) находилась на борту исследовательского судна Norseman II в поисках крошечных, но опасных существ, скрывающихся у побережья Аляски. Когда судно приблизилось к Берингову проливу, аспирантка Океанографического института Вудс-Хоул (WHOI) наблюдала, как количество одноклеточного организма Alexandrium catenella увеличивается на изображениях проб воды. Она и её коллеги плыли через плотные скопления динофлагеллят в основании пищевой цепи, производящих токсины, которые могут привести к паралитическому отравлению моллюсками. К концу круиза команда обнаружила самое большое токсичное цветение A. catenella, которое когда-либо наблюдалось в полярных водах, простирающееся как минимум на 600 километров и вызвавшее появление предупреждений о потенциально небезопасном морском промысле.

 Учёные говорят, что такое полярное цветение более вероятно, поскольку изменение климата приводит к ещё более высоким температурам океанов. «Чем теплее, тем быстрее [клетки] потенциально могут расти и размножаться», — говорит Фашон, ведущий автор статьи, описывающей цветение 2022 года. Работа, опубликованная на прошлой неделе в журнале Limnology and Oceanography Letters, обнаружила, что концентрации водорослей более чем в 100 раз превышают уровень, необходимый для предупреждения об опасности общественного здравоохранения.

 Группе посчастливилось задокументировать необычайное цветение, которое в противном случае могло бы остаться незамеченным, пока кто-то, потреблявший пищу, заражённую микробом, не заболел. «То, что они были там, чтобы запечатлеть это, просто удивительно», — говорит Джули Матвею (Julie Matweyou), учёный-эколог из Alaska Sea Grant’s Marine Advisory Program (MAP).

Цветение A. catenella — проблема, которая уже давно беспокоит рыболовство в более низких широтах, включая юго-восточную Аляску. Но в последние годы учёные обнаружили доказательства того, что цветение становится угрозой и для арктических сообществ. Во время предыдущих исследовательских круизов Фашон её консультант Дональд Андерсон (Donald Anderson) из WHOI, взял образцы донных отложений и задокументировал «массивные» пласты цист A. catenella, спящей формы её жизненного цикла, простирающиеся более чем на 1000 километров от Берингова пролива до западного края моря Бофорта. При подходящих условиях эти цисты могут вызвать вредоносное цветение в поверхностных водах. 

Фашон и её коллеги подозревают, что цветение 2022 года зародилось где-то в Беринговом море, возможно, в российском Анадырском заливе. Поскольку сильные ветры вытеснили богатые питательными веществами воды западной части Берингова моря в более тёплые воды Аляски, благоприятная температура и условия с питательными веществами позволили водорослям размножиться. 

Беспрецедентное полярное цветение представляет собой растущую угрозу общественному здравоохранению, говорит Кристофер Гоблер (Christopher Gobler), эколог из Университета Стоуни-Брук, опубликовавший в 2017 году исследование, показывающее, что потепление океана расширило диапазон вредного цветения водорослей в северных частях Атлантического и Тихого океанов. «Это действительно то, что может застать врасплох регулирующие органы – и даже в некоторых случаях медицинское сообщество – потому что всё создано для борьбы с известным, а не с неизвестным». 

В отличие от многих прибрежных районов США, где отслеживаются образцы океана на наличие A. catenella, в Беринговом проливе не хватает инфраструктуры для обнаружения цветения, подобного тому, которое произошло в 2022 году. Местные чиновники здравоохранения приступили к действиям по распространению рекомендаций среди окрестных племён, которые полагаются на натуральный сбор урожая, только после того, как исследователи сообщили о высоких показателях A. catenella. 

Гей Шеффилд (Gay Sheffield), биолог морских млекопитающих из MAP и соавтор нового исследования, говорит, что, по её мнению, возможно, это удача, что никто не погиб. В августе того же года семья поймала моллюска к северу от Савунги, поселения на острове Св. Лаврентия. Из-за недавней рекомендации они отправили моллюска на тестирование вместо того, чтобы съесть его, и его токсинная нагрузка более чем в пять раз превышала предел безопасности пищевых продуктов. 

Исследовательские круизы проводятся не каждое лето. Поэтому Шеффилд работала с другим автором исследования — Эммой Пейт (Emma Pate), специалистом по экологическому планированию в корпорации Norton Sound Health, — чтобы улучшить возможности отбора проб воды, когда местные условия содержания водорослей могут быть опасными, и обеспечить финансирование для строительства испытательной лаборатории в Номе. 

Но мониторинг воды на такой обширной территории является сложной задачей, поскольку всё ещё существуют пробелы в знаниях о том, как ведут себя цветы и почему некоторые из них особенно токсичны. Работа Фашон показала, что цветение 2022 года было гораздо более токсичным, чем любое зарегистрированное в заливе Мэн, за которым уже давно наблюдают. 

Исследователи всё ещё пытаются понять, как токсины перемещаются по пищевой сети. В других странах мира предупреждения, связанные с цветением, в основном касаются моллюсков и мидий, которые, как известно, накапливают ядовитые количества токсинов. Но племена в районе Берингова пролива также полагаются на морских птиц, тюленей, моржей и китов. 

Пейт и Шеффилд отправляют образцы местных животных в государственную лабораторию для тестирования. Это не та задача, к которой они относятся легкомысленно; просить образцы — это все равно, что брать еду прямо с тарелок, отмечает Пейт. Но после цветения вируса в 2022 году жители стали лучше знакомиться с мерами предосторожности и необходимостью тестирования. «Это процесс обучения, потому что нам всё ещё нужно больше данных», — говорит Пейт.

 

Ссылка: https://www.science.org/content/article/warming-oceans-are-pushing-harmful-algal-blooms-polar-waters

Печать

Climate Dynamics: Переход от компенсации поверхностной плотности к прогнозируемому потеплению, опреснению и усилению стратификации в приполярной части Северной Атлантики

 

Гидрография и стратификация приполярной части Северной Атлантики сильно различаются: конвекция активируется и деактивируется в некоторых частях морей Лабрадор и Ирмингера. Эта изменчивость, вероятно, являющаяся следствием Атлантической меридиональной термохалинной циркуляции, изучается в ретроспективном прогнозе модели океана с большим количеством вихрей, охватывающем 1958–2021 гг., а также в воспроизведении ситуаций 1950–2050 гг. с четырьмя климатическими моделями, охватывающими различия в разрешении океана (насыщенные вихрями или допускающие вихри), коде и реализации. Стратификация морей Лабрадора и Ирмингера количественно оценивается с помощью потенциальной энергетической аномалии в верхних 1000 м водного столба. Ежемесячные аномалии потенциальной энергетической аномалии оцениваются наряду с соответствующими аномалиями температуры поверхности моря, солёности и плотности. Для 30-летних окон скользящие корреляции между потенциальной энергетической аномалией и свойствами поверхности получены в течение 100-летнего моделирования, чтобы охарактеризовать развивающиеся взаимосвязи. По мере прогрессирования изменения климата стратификация в трёх из четырёх моделей всё больше связана с переменной поверхностной солёностью в обоих регионах. Лагранжев анализ путей поверхностного стока за десятилетия, предшествовавшие 1990 и 2040 годам, проводится для одной из моделей, в которой влияние поверхностной солёности возрастает. Установлено, что к 2040 году субполярное присутствие низкосолёных арктических вод и высокосолёных субтропических атлантических вод соответственно увеличится и уменьшится. Кроме того, в трёх из четырёх моделей постепенно заменяется компенсация поверхностной плотности, связанная с корреляцией приземной температуры и аномалий солёности, как результат комбинированного потепления и опреснения поверхности, снижения плотности поверхности и усиления стратификации. Масштабы этих зависящих от модели изменений и процессов будут иметь последствия для прогнозируемой судьбы Атлантической меридиональной термохалинной циркуляции к середине XXI века.

 

Ссылка: https://link.springer.com/article/10.1007/s00382-024-07336-6

Печать

Nature Climate Change: Новые парадигмы селекции пшеницы в условиях потепления климата

 

Селекция растений добилась успехов в адаптации сельскохозяйственных культур во всём мире, и одной из последних задач является адаптация к более тёплым дням и ночам. На примере пшеницы авторы показывают, что современные элитные питомники демонстрируют различные уровни адаптации к жаре. Как правило, чем выше коэффициент отбора по реакции урожайности в условиях потепления, тем менее стабильной является реакция урожайности в разных средах. В частности, менее трети испытанных генотипов хорошо адаптировались к потеплению на 0,26°C за последнее десятилетие, а фенотипы были стабильными только в 26% сред. При продолжающемся потеплении коэффициент отбора падает на 8,5%, а стабильность - на 8,7% на каждое повышение локальной температуры на 1°C. В целом, при столкновении с большей изменчивостью климата селекционерам необходимо пересмотреть свои стратегии разведения, чтобы интегрировать генетическое разнообразие, обеспечивающее устойчивость к изменению климата без ущерба для продуктивности в благоприятные сезоны.

 

Ссылка: https://www.nature.com/articles/s41558-024-02069-0

Печать

Atmosphere: Изучение происхождения двухнедельного предела предсказуемости: новый взгляд на исследования Лоренца в области предсказуемости 1960-х годов

 

1960-е годы были захватывающей эпохой для исследований предсказуемости состояния атмосферы: с помощью моделей Лоренца была обнаружена конечная предсказуемость атмосферы, а общепризнанный предел предсказуемости в две недели был оценён с использованием модели общей циркуляции. Здесь авторы предлагают углубиться в детали того, как была установлена ​​корреляция между двухнедельным пределом предсказуемости и временем удвоения в пять дней, они признают новаторскую работу Лоренца и предполагают невозможность предсказуемости за пределами двух недель. Произведена переоценка результатов трёх различных подходов — динамического, эмпирического и динамически-эмпирического, — представленных в работах 1960-х годов Лоренца и Чарни и др. Используя внутренние характеристики нерегулярных решений, обнаруженные в исследованиях Лоренца, и динамический подход, время удвоения в пять дней было оценено с использованием модели Минца-Аракавы и экстраполировано, чтобы предложить предел предсказуемости примерно в две недели. Этот предел теперь называется «гипотезой предела предсказуемости», проводится параллель с законом Мура с целью признать совокупное прямое и косвенное влияние Лоренца, Минца и Аракавы под руководством Чарни. Эта концепция служит мостом между гипотетическим пределом предсказуемости и практическими возможностями модели, предполагая, что долгосрочное моделирование не полностью ограничивается гипотезой двухнедельной предсказуемости. Эти разъяснения обеспечивают дополнительную поддержку исследованиям прогнозов с расширенным диапазоном с использованием подходов, основанных как на уравнениях в частных производных, так и на основе искусственного интеллекта.

 

Ссылка: https://www.mdpi.com/2073-4433/15/7/837

Печать

Nature Communications Earth & Environment: Оценка краткосрочной и долгосрочной роли удаления углекислого газа в достижении глобальных климатических целей

 

В шестом оценочном докладе Межправительственной группы экспертов по изменению климата (МГЭИК) не было достаточной информации о сценариях в земельном секторе для оценки общего объёма удаляемого углекислого газа. Здесь, используя основанный на оценённых МГЭИК сценариях набор данных об удалении углекислого газа на суше, авторы показывают, что поглощение посредством облесения и лесовосстановления играет решающую краткосрочную роль в смягчении последствий, составляя около 10% (медиана) суммарного сокращения выбросов парниковых газов в период с 2020 по 2030 гг. в сценариях, ограничивающих потепление 1,5°C. Новые технологии удаления углекислого газа, такие как прямое улавливание и хранение углерода в воздухе, масштабируются до уровня в несколько гигатонн к 2050 году и далее, чтобы сбалансировать остаточные выбросы и остановить потепление. Показано, что сокращение выбросов ископаемого топлива и вырубки лесов (валовых выбросов) составляет более 80% чистого уменьшения выбросов парниковых газов до тех пор, пока глобальный чистый нулевой уровень углекислого газа (CO2) не будет зависеть от строгости климатических целей. Изучается региональное распределение валовых выбросов и общего удаления углекислого газа в рамках экономически эффективных путей смягчения последствий и подчёркивается важность учёта справедливости и более широких соображений устойчивости в будущих оценках путей смягчения последствий с удалением углекислого газа.

 

Ссылка: https://www.nature.com/articles/s43247-024-01527-z

Печать

Nature Communications Earth & Environment: Структуры циркуляции атмосферы синхронизируют таяние панарктических ледников и таяние многолетней мерзлоты 

 

Арктика быстро меняется из-за усиления глобальных температурных тенденций, оказывающих глубокое воздействие на ледниковый покров Гренландии, ледники, мёрзлую почву, экосистемы и общество. Авторы сфокусировались на воздействиях, вызываемых атмосферной циркуляцией в дополнение к тенденциям потепления климата. Они объединили временные ряды баланса массы ледников на основе временных спутниковых гравиметрических измерений (GRACE/GRACE-FO; 2002–2023 гг.), толщины активного слоя в районах многолетней мерзлоты из результатов дистанционного зондирования и моделирования ESA’s Climate Change Initiative (2003–2019 гг.) и полевых измерений Circumpolar Active Layer Monitoring Network (2002–2023 гг.). Несмотря на региональные и системные сложности, выявлены устойчивые ковариации между этими наблюдениями, которые изменяются асинхронно между соседними регионами и синхронно в регионах, расположенных в противоположных от Северного полюса направлениях. Выявлена ​​тесная связь с доминирующими режимами циркуляции атмосферы, контролирующими около 75% общей панарктической изменчивости воздействия (2002–2022 гг.), влияющей также на Гренландский ледниковый щит. Подчёркивается необходимость учитывать такие атмосферные структуры движения при прогнозировании воздействий, особенно вызванных экстремальными явлениями, в условиях всё более тёплой Арктики.

 

Ссылка: https://www.nature.com/articles/s43247-024-01548-8

Печать

Nature Geoscience: Адаптация к искусственному интеллекту

 

Инструменты искусственного интеллекта могут революционизировать работу и публикации учёных. Ниже представлены основные правила управления присущими рисками.

В мире обсуждаются инструменты искусственного интеллекта (ИИ), которые можно легко использовать в повседневной жизни. Всё более совершенный генеративный искусственный интеллект — модели «глубокого обучения», использующие нейронные сети, подобные человеческому мозгу, для генерации контента или данных на основе их обучения — предоставляют исследователям новые заманчивые способы сбора и улучшения научных работ. Он также предлагает сокращённые варианты, которые могут оказаться обременительным процессом написания. Генеративный ИИ обладает огромным потенциалом для улучшения научной коммуникации, но представляет собой минное поле с юридической и этической точки зрения. Более того, результаты таких моделей не всегда верны, и существует риск того, что такие инструменты могут быть использованы злонамеренно для создания дезинформации. Исследователям и издателям нужны чёткие рекомендации, гарантирующие ответственное использование генеративного ИИ. 

Генеративные инструменты искусственного интеллекта, включающие большие языковые модели (Large Language Models, LLM), такие как ChatGPT, можно использовать для обобщения больших объёмов информации и объяснения сложных тем простым языком. Их можно использовать для быстрого создания текста, изображений и видео с помощью нескольких подсказок. Это не говоря уже обо всех других способах, которыми учёные начинают использовать эти инструменты в проведении научных исследований, например, при написании кода. 

В этой быстро развивающейся среде ИИ журнал Nature Geoscience, как и все журналы Springer Nature, осознают необходимость защиты прозрачности и целостности публикуемых научных исследований от рисков, которые представляет ИИ1. Поэтому установлены некоторые первоначальные основные правила использования ИИ в статьях журнала (см. редакционную политику Nature Portfolio AI). 

Во-первых, LLM не разрешается указываться в качестве авторов исследовательской работы. Это просто потому, что LLM не может соответствовать критериям авторства (см. Критерии авторства Nature Portfolio): модель не может одобрить рукопись или нести личную ответственность за свой вклад в работу. Использование LLM для помощи в разработке текста не запрещено, но редакция просит авторов открыто говорить об их использовании, как и о любом другом методе, используемом в исследовании. Любое использование LLM должно быть чётко задокументировано в разделе «Методы» или «Благодарности» документа. 

Во-вторых, в настоящее время не разрешается использование изображений и видео, созданных искусственным интеллектом. Хотя редакция ценит захватывающий потенциал визуального контента, создаваемого искусственным интеллектом, существуют нерешённые юридические вопросы и проблемы честности исследований. Существующие инструменты генеративного искусственного интеллекта не раскрывают источники обучающих изображений. Таким образом, точность полученных изображений не может быть проверена, изображения не могут быть надлежащим образом атрибутированы, а авторские права и конфиденциальность могут быть нарушены2. Пока нормативно-правовая система не наверстает упущенное, визуальный контент, созданный с помощью генеративного искусственного интеллекта, не будет публиковаться. Разрешается использовать негенеративные инструменты машинного обучения для манипулирования существующими изображениями, но требуется, чтобы это было указано в подписи к рисунку. 

Наконец, разработаны рекомендации по использованию генеративного искусственного интеллекта рецензентами. Хотя может возникнуть соблазн использовать LLM для обобщения статьи или написания отчёта о рецензировании, следует проявлять осторожность при использовании этих инструментов. Рецензенты несут ответственность за точность своих отчётов, и редакция полагается на технический опыт рецензентов, чтобы обеспечить точность публикуемых исследований. Кроме того, поскольку рукописи могут содержать конфиденциальную информацию, которая не может быть раскрыта вне процесса рецензирования, содержится просьба к рецензентам (и редакторам) не загружать рукописи в инструменты генеративного искусственного интеллекта. Любое другое использование инструментов искусственного интеллекта при оценке рукописи должно быть открыто заявлено в отчёте о рецензировании. 

Помимо этой политики, в центр внимания ставится разумная дорожная карта лучших практик использования генеративного ИИ в научных публикациях. Становится всё более очевидным, что человеческий надзор имеет важное значение для защиты целостности и прозрачности исследований и экспертной оценки. Авторам не следует слепо принимать текст, предложенный LLM, а критически задуматься о том, является ли он точным3. Авторы, а не инструменты, которые они используют, несут ответственность за достоверность своего вклада в научную статью. 

Программы LLM могут быть особенно привлекательными для авторов, сталкивающихся с языковыми барьерами при изложении своей работы на английском языке в международных журналах. Учитывая риск внесения неточностей, авторам следует рассмотреть вопрос о том, могут ли альтернативы, такие как помощь в редактировании со стороны коллеги, быть адекватными. Редакция напоминает потенциальным авторам, что при рассмотрении материалов для рецензирования не важно, написана ли статья на идеальном английском языке, при условии, что она достаточно понятна, чтобы редакторы (и, возможно, рецензенты) могли её оценить4. Все опубликованные рукописи проходят копировальное редактирование. 

ИИ быстро развивается. Хотя движение к этому новому рубежу идёт с осторожностью, это делается непредвзято. Springer Nature будет регулярно пересматривать и обновлять политику использования ИИ. Следите за обновлениями!

 

Литература

  1. Nature 613, 612 (2023).
  2. Nature 618, 214 (2023).
  3. Nat. Mach. Intell. 5, 469 (2023).
  4. Nat. Geosci. 7, 77 (2014).

Ссылка: https://www.nature.com/articles/s41561-024-01475-5

Печать