Климатический центр Росгидромета

Новости партнеров

Пожары и гари сибирской тайги

«Черное небо», дымный «туман» с отчетливым запахом гари — таким осталось в памяти населения Сибири лето 2019 г. В тот год площадь охваченной огнем тайги уже к середине августа превышала 5 млн га — дым от этих лесных пожаров дошел до Урала и Казахстана. Леса, пройденные огнем, восстанавливаются далеко не всегда. При этом ученые относят лиственницу и сосну — доминанты северной тайги — к деревьям-«огнелюбам». Так возникает парадокс: если эти леса не будут гореть, они не будут расти.

Об авторах

Вячеслав Иванович Харук — доктор биологических наук, заведующий лабораторией мониторинга леса Института леса им. В. Н. Сукачева СО РАН (Красноярск), профессор Института космических и информационных технологий Сибирского федерального университета (Красноярск). Автор и соавтор более 150 научных работ.

Евгений Иванович Пономарев — кандидат технических наук, старший научный сотрудник лаборатории мониторинга леса Института леса им. В. Н. Сукачева СО РАН (Красноярск), доцент Сибирского федерального университета (Красноярск). Автор и соавтор более 130 научных работ, в том числе 8 монографий.

Леса в Сибири горели всегда, но в XXI в. частота и площади лесных пожаров возросли: в отдельные годы пройденные огнем территории достигали 10–12 млн га. Такие катастрофические пожары случались и раньше (например, в 1915 г. сибирская тайга горела на площади 12 млн га), но значительно реже.

Уже при беглом взгляде на карту территорий, пройденных огнем, может показаться, что только за последнее десятилетие северная тайга выгорела наполовину, и в ближайшее время мы рискуем остаться без сибирских лесов. Но следует различать «пройденные огнем площади» и погибшие древостои, поскольку последствия зависят как от вида и интенсивности пожара, так и от типа растительного покрова.

При верховом пожаре, когда огонь скачет по кронам, гибель деревьев неизбежна. Однако при малоинтенсивных низовых пожарах, особенно в сосняках и лиственничниках, значительной гибели древостоя обычно не происходит. В реальности до половины всех лесов, испытавших на себе воздействие огня, не погибает (Барталев и др., 2015).

С чего начинаются пожары?

Согласно парадигме специалистов-пирологов, существует «триада загорания леса», в которую входят: наличие лесных горючих материалов, их «зрелость» (готовность к возгоранию, зависящая от погоды) и источник огня. При отсутствии любой составляющей пожар невозможен.

Горючих материалов в тайге всегда хватает. На их готовность к воспламенению, скорость распространения и вид пожара влияют осадки, температура и влажность воздуха, ветер, тип растительного покрова, рельеф местности.

В лесах средних широт, где проживает большая часть населения, причиной более 80% возгораний является «человеческий фактор». Но чем дальше на север и меньше плотность населения (в Эвенкии, например, она составляет 0,03 чел./км2), тем ниже вероятность пожаров из-за неосторожности с огнем. Немаловажно, что сами северяне издавна бережно относятся к лесам, знают и чтут таежные законы.

В высоких широтах основной источник возгораний (до 90% случаев) — это разряды молний, особенно во время «сухих гроз» с минимальным количеством осадков, возникающих при высокой температуре и низкой относительной влажности воздуха. Возгораниям в результате удара молнии способствует и скачок электропроводности на границе талого грунта с мерзлотой, из-за чего энергия концентрированно выделяется в узком поверхностном слое, повышая вероятность возникновения пожара. Кстати сказать, потепление климата влечет за собой возрастание частоты молний на 10–12% на каждый градус (Romps et al., 2014).

С продвижением в высокие широты уровень инсоляции снижается, поэтому там меньше тепла, необходимого для просушки горючих материалов до уровня воспламенения от удара молнии или искры костра, а следовательно, пожароопасный сезон короче.

С одной стороны, это влечет уменьшение числа пожаров и, соответственно, межпожарного интервала. Если в тайге междуречья Ангары и Подкаменной Тунгуски он составляет около 80 лет, то на северном пределе произрастания лиственницы — уже 300 лет. С другой стороны, с продвижением в высокие широты площади гарей возрастают: «база» горючих материалов там обширнее, а пожары, не угрожающие населенным пунктам, не тушатся.

У северных пожаров есть и еще ряд отличий. Так, в средних широтах наблюдается два пика горимости: весной — в начале лета и в августе-сентябре. На «северах» частота пожаров лимитируется теплом, необходимым для «созревания» горючих материалов, поэтому горимость там максимальна в середине лета.

Возникновение и развитие пожаров тесно связано с рельефом местности. От высоты над уровнем моря зависят величина осадков и температура воздуха, влияющие на горимость, а также вероятность молниевых разрядов. Пожары возникают преимущественно на южных прогреваемых склонах. В горной тайге скорость продвижения кромки огня резко (до 10 крат) возрастает на крутых склонах, чему способствуют восходящие по склонам потоки горячего воздуха.

Как феникс из пепла

Лиственница, наряду с березой, заслуживает право быть символом нашей страны, ведь лиственничники занимают более 40% площади всех российских лесов. А в криолитозоне, характеризующейся вечной мерзлотой и неглубоким сезонно-талым слоем, лиственницами — сибирской, даурской и Каяндера — сформированы до 80% таежных лесов.

Особенность лиственничников, растущих на мерзлотных почвах, заключается в том, что слой, где могут располагаться корни, со временем постепенно сужается (до 30 см и менее) из-за уменьшения глубины сезонного оттаивания. Причина — разрастание мохово-лишайниковой «подушки», прекрасного теплоизолятора. По мере подъема мерзлоты приток питательных веществ снижается и, как следствие, падает величина годичного прироста деревьев. Наряду с этим резко уменьшается и количество подроста: легкие семена лиственницы, зависая на слое мха, не способны при прорастании «дотянуться» до почвы.

Так, лиственничники «впадают в дрему», из которой их могут вывести только пожары. Более половины всех пожаров в Сибири возникает именно в тех лесах, где доминирует лиственница. К тому же в большей части этой зоны выпадает мало осадков (нередко менее 300 мм/год) и часты продолжительные засухи. Свой вклад в высокую пожароопасность лиственничников вносит мощный сибирский антициклон, при котором дожди могут не выпадать в течение месяца и более. Возникновение пожара провоцирует разрастание мхов и лишайников, при высыхании превращающихся в прекрасный проводник горения.

Важнейшее последствие этих пожаров — улучшение экологических условий для возобновления лиственницы. Источником семян становятся уцелевшие на гари деревья: даже при сильных пожарах не все лиственницы погибают, чему способствуют неоднородности рельефа и увлажненности. И даже если сам лиственничник погиб, но семена успели созреть, что возможно при осенних пожарах, то гарь обильно засевается из упавших раскрывающихся шишек. Легкие, с «крылышками» семена лиственницы могут заноситься на гарь с неповрежденных древостоев по снегу ветром и талыми водами.

Эти семена дают обильную, быстро растущую поросль, так как почва на гари обогащена азотом, фосфором и другими биогенными элементами, ее дренаж и аэрация лучше, а глубина сезонного оттаивания больше. Кроме того, на гарях резко улучшается световой режим за счет гибели материнского полога и выгорания живого напочвенного покрова, что важно для этого светолюбивого вида. Так что и выжившие после пожара деревья значительно увеличивают свой прирост.

Таким образом, пожары способствуют обновлению и омоложению экосистемы лиственничников. Лесоводы определяют лиственницу как пирофитный, т. е. «любящий огонь», вид, поскольку пожары способствуют доминированию лиственницы, особенно в условиях вечной мерзлоты. Кстати сказать, наряду с лиственницей гари криолитозоны частично возобновляются березой и ольховником. Эти виды сохраняются в лиственничниках как примесь в благоприятных местообитаниях, например в поймах рек.

К «огнелюбам» относится и сосна обыкновенная. При отсутствии пожаров она вытесняется на более бедные почвы и заболоченные территории другими породами, такими как ель. Как и лиственница, сосна очень светолюбива и плохо возобновляется под пологом леса. Оба эти вида эволюционировали в условиях периодических пожаров, адаптируясь к ним и приобретая конкурентные преимущества перед другими породами.

Судя по спутниковым снимкам и наземным обследованиям, вся территория северных лиственничников, по сути, представляет собой мозаику древостоев, находящихся на разных стадиях восстановления после пожаров. И возникает вопрос: есть ли смысл повсеместно бороться с огнем в лесах, само существование которых определяется периодическими пожарами? Оправданны ли экономически затраты на их тушение, особенно на далеких труднодоступных территориях — там, где пожары не угрожают жизни людей, их домам и промышленным объектам? В конечном итоге сработает природный «противопожарный» механизм — циклоны, несущие дожди, которые приходят на смену сухой и жаркой погоде.

Горят темнохвойные

Наибольший ущерб пожары причиняют темнохвойным лесам, сформированным кедром, пихтой и елью. Пожары в них обычно случаются реже, так как эти породы более требовательны к условиям увлажненности: в их местообитаниях осадков выпадает больше, чем там, где растут устойчивые к засухе лиственницы и сосны. Сосну кедровую сибирскую (в просторечии — кедр) за влаголюбие даже называют «деревом туманов».

Однако в засушливые годы и в таких лесах площади пожаров достигают миллионов гектаров, как это случилось, например, в 2010 г. в Западной Сибири. В отличие от сосны и лиственницы, стволы темнохвойных пород слабо защищены коркой от низовых пожаров, а густая, нередко опускающаяся до земли крона, насыщенная эфирными маслами, способствует переходу низовых пожаров в опустошительные верховые. Скорость распространения последних такова, что от них едва ли спасется даже быстроногий лесной олень.

Возобновление гарей в темнохвойниках обычно идет через смену древесных пород. Вначале эти площади, как правило, захватывают осина и береза, под пологом которых селятся темнохвойные породы, способные выносить затенение, в первую очередь пихта и ель. Постепенно они продвигаются в верхний ярус леса. Береза и особенно осина являются светолюбивыми видами и под густым темнохвойным пологом не выживают. К тому же они недолговечны: большинство осин к 80 годам практически полностью поражаются сердцевинными гнилями.

Таким образом, за сто лет мелколиственные породы обычно вытесняются коренными темнохвойными. Однако часть территории может быть надолго захвачена травами, кустарниками и той же осиной или березой. Дело в том, что разросшийся травяно-кустарниковый покров провоцирует пожары (весной сухая трава — прекрасный горючий материал), которые уничтожают подрост темнохвойных. Береза же и осина способны размножаться корневыми отпрысками. Вот в таких местообитаниях помощь человека в восстановлении темнохвойных лесов необходима.

Однако полное подавление пожаров приводит к формированию старых, ослабленных «перестойных» древостоев, которые становятся кормовой базой для короедов и других фитопатогенов. К примеру, в свое время леса западного побережья Северной Америки, сбереженные от огня, погубили жуки-короеды, превратив их в сухостои.

Чтобы избежать катастрофических пожаров и понизить уровень пожароопасности, пирологи предлагают устраивать «профилактические» пожары. При таких контролируемых выжиганиях сгорает «лесной хлам» (валежник, опад и т. п.), который при накоплении способен стать пищей для низового пожара и спровоцировать его переход в опустошительный верховой.

Метод «управляемых пожаров» требует высокого профессионализма и может быть применим только локально. Во-первых, он затратный: необходимо подготовить выбранный участок, прорубить вокруг него просеки, а затем отслеживать динамику пожара. Во-вторых, он рискованный, так как нужно точно выбрать время и погодные условия, чтобы при смене направления или усилении ветра огонь не «убежал» из зоны контроля и/или не вызвал верховой пожар. Подобное случилось, к примеру, в начале 2000-х гг. в США, когда вышедший из-под контроля пожар развернулся в сторону знаменитого Лос-Аламосского ядерного центра в Калифорнии.

Лес, согласно присловью пирологов, горел, горит и будет гореть. А в будущем, по прогнозам, гореть будет чаще и на все возрастающих площадях. Потепление в Сибири, как и во всей бореальной зоне, идет вдвое быстрее, чем в целом по планете. Это влечет усиление погодных аномалий, удлинение пожароопасного периода, а значит, возрастание частоты, интенсивности и площади пожаров.

В перспективе ожидается смещение природных зон, что приведет к изменениям показателей горимости сибирских лесов. В южной тайге это выразится в первую очередь в сокращении межпожарных интервалов, на севере — в усилении мозаичности пожарных режимов.

В целом же в ближайшие десятилетия пожарная ситуация в бореальных лесах неизбежно будет обостряться. Об этом предупреждают и наши канадские коллеги: «Необходимо принять, что в будущем площадь лесных пожаров возрастет более чем вдвое, что повлечет усиление задымленности атмосферы» (Flannigan, 2020). Густой дымный смог уже накрывает не только канадские леса, но и достигает Ванкувера, Монреаля и Нью-Йорка.

В условиях меняющихся пожарных режимов необходима разработка новой стратегии борьбы. Известно, что полное подавление лесных пожаров ведет к накоплению горючих материалов в древостоях, провоцируя возникновение катастрофических пожаров, — эффект, который пирологи называют «пожарным парадоксом». При этом снижается и разнообразие лесных ландшафтов.

В борьбе с лесными пожарами могут помочь сами пожары, поскольку они, как ни парадоксально, не только снижают вероятность возникновения обширных интенсивных пожаров, но и способствуют восстановлению лесных экосистем — так называемый двойной пожарный парадокс. Никакие иные способы («управляемые пожары», удаление горючих материалов) не могут по отдельности поддерживать существование обширных северных лесов (Tymstra et al., 2020).

В условиях потепления климата нам нужно принять тот факт, что ущерб от пожаров будет возрастать, а возможность их полного подавления — снижаться. В этой связи канадские ученые предлагают сменить существующую парадигму и допускать большее число лесных пожаров в пределах обширных лесных ландшафтов. Вместо полного подавления пожаров рекомендуется вести их мониторинг, прибегая к тушению пожаров лишь в случае угрозы населению и особо охраняемым территориям. Подобная стратегия тушения пожаров на основе приемлемых рисков возможного ущерба уже реализована в провинции Саскачеван на юге Канады.

Аналогичные идеи были предложены и отчасти применены на практике отечественными учеными и инженерами. Однако в условиях меняющегося климата требуются значимые изменения в стратегии и тактике борьбы с пожарами в наших лесах, включая районирование лесных территорий по уровню предпочтения в тушении пожаров. Необходимо выделить приоритетные территории, сфокусироваться на охране территорий с высокой социальной, природной и экономической ценностью, учитывая значимость подверженных опасности лесов, включая их внерыночную стоимость, наличие индустриальной инфраструктуры и населенных пунктов, влияние задымления на здоровье людей, а также стоимость противопожарных работ. Особое внимание следует уделить совершенствованию методов борьбы с пожарами, повышения технической оснащенности «огнеборцев», включая создание парка «самолетов-цистерн» и расширение ресурсов сети авиалесоохраны.

Но пока такой подход к проблеме возрастающей горимости лесов и рискам увеличивающихся потерь от лесных пожаров не находит должного понимания не только у политиков, но и у общественности.

Работа выполнена при поддержке РФФИ (проект № 18-05-00432) и ККФН-РФФИ (проект № 18-41-242003). В публикации использованы фото В. И. Харука.

Литература
1. Барталев С. А., Стыценко Ф. В., Егоров В. А. и др. Спутниковая оценка гибели лесов России от пожаров // Лесоведение. 2015. № 2. С. 83–94.
2. Харук В. И., Пономарев Е. И. Пространственно-временная горимость лиственничников Центральной Сибири // Экология. 2017. № 6. С. 413–419.
3. Kharuk V. I., Ranson K. J., Dvinskaya M. L. Wildfires dynamic in the larch dominance zone // Geophys. Res. Lett. 2008. V. 35. ARTN L01402.
4. Kharuk V. I., Dvinskaya M. L., Petrov I. A. et al. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals // Regional Environmental Change. 2016. V. 16. P. 2389–2397.
5. Krylov A., McCarty J. L., Potapov P. et al. Remote sensing estimates of stand-replacement fires in Russia, 2002–2011 // Env. Res. Lett. 2014. V. 9. N. 105007. P. 1–8.
6. de Groot W. J., Flannigan M. D., Cantin A. S. Climate change impacts on future boreal fire regimes // For Ecol Manage. 2013. № 294. P. 35–44.
7. Wotton B. M., Flannigan M. D., Marshall G. A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada // Environ Res Lett. 2017. V. 12(9).
8. Tymstra C., Stocks B., Cai X. et al. Wildfire management in Canada: Review, challenges and opportunities // Progress in Disaster Science. 2020. V 5. 10004.
9. Romps D., Seeley J., Vollaro D. et al. Projected increase in lightning strikes in the United States due to global warming // Science. 2014. V. 346(6211). P. 851–854.

Ссылка: https://elementy.ru/nauchno-populyarnaya_biblioteka/435345/Pozhary_i_gari_sibirskoy_taygi

Печать